
OPINION

6    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

The Rise and Fall of the Operating System
A N T T I K A N T E E

A n operating system is an arbitrary black box of overhead that enables
well-behaving application programs to perform tasks that users are
interested in. Why is there so much fuss about black boxes, and could

we get things done with less?

Historical Perspective
Computers were expensive in the ’50s and ’60s. For example, the cost of the UNIVAC I in
1951 was just short of a million dollars [1]. Accounting for inflation, that is approximately
nine million dollars in today’s money. It is no wonder that personal computing had not been
invented back then. Since it was desirable to keep millions of dollars of kit doing something
besides idling, batch scheduling was used to feed new computations and keep idle time to a
minimum.

As most of us intuitively know, reaching the solution of a problem is easier if you are allowed
to stumble around with constant feedback, as compared to a situation where you must have
holistic clairvoyance over the entire scenario before you even start. The lack of near-instant
feedback was a problem with batch systems. You submitted a job, context switched to some-
thing else, came back the next day, context switched back to your computation, and discov-
ered the proverbial missing comma in your program.

To address the feedback problem, time-sharing was invented. Users logged into a machine
via a teletype and got the illusion of having the whole system to themselves. The time-
sharing operating system juggled between users and programs. Thereby, poetic justice was
administered: the computer was now the one context-switching, not the human. Going from
running one program at a time to running multiple at the “same” time required more complex
control infrastructure. The system had to deal with issues such as hauling programs in and
out of memory depending on if they were running or not (swapping), scheduling the tasks
according to some notion of fairness, and providing users with private, permanent storage
(file systems). In other words, 50 years ago they had the key concepts of current operating
systems figured out. What has happened since?

It’s Called Hardware Because It Makes Everything Hard
When discussing operating systems, it is all but mandatory to digress to hardware, another
black box. After all, presenting applications with a useful interface to hardware is one of the
main tasks of an operating system, time-sharing or otherwise. So let’s get that discussion out
of the way first. The question is: why does hardware not inherently present a useful interface
to itself? We have to peer into history.

I/O devices used to be simple, very simple. The intelligent bit of the system was the software
running on the CPU. It is unlikely that manufacturers of yore desired to make I/O devices
simpler than what they should be. The back-then available semiconductor technologies
simply did not feasibly allow building complex I/O devices. An example of just how hopeless
hardware used to be is the rotational delay parameter in old versions of the Berkeley Fast File
System. That parameter controlled how far apart, rotationally speaking, blocks had to be
written so that contiguous I/O could match the spinning of the disk. Over the years, adding

Antti has been an open source
OS committer for over 15 years
and believes that code which
works in the real world is not
born, it is made. He is a fan

of simplest possible solutions. Antti lives in
Munich and can often be seen down by the
Isar River when serious thinking is required.
pooka@rumpkernel.org

http://www.usenix.org
mailto:pooka@rumpkernel.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  7

OPINION
The Rise and Fall of the Operating System

more processing power to storage devices became feasible,
and we saw many changes: fictional disk geometry, I/O buffer-
ing, non-spinning disks, automated bad block tracking, etc. As
a result of the added processing power, approaches where the
systems software pretends it still knows the internal details of
devices, e.g., rotational delay, are obsolete or at least faltering.

As a result of added I/O device processing power, what else is
obsolete in the software/hardware stack? One is tempted to
argue that everything is obsolete. The whole hardware/soft-
ware stack is bifurcated at a seemingly arbitrary position which
made sense 30 years ago, but no longer. Your average modern
I/O device has more computing power than most continents had
30 years ago. Pretending that it is the same dumb device that
needs to be programmed by flipping registers with a sharpened
toothpick results in sad programmers and, if not broken, at
least suboptimal drivers. Does doing 802.11 really require 30k+
lines of driver code (including comments), 80k+ lines of generic
802.11 support, and a 1 MB firmware to be loaded onto the NIC?
For comparison, the entire 4.3BSD kernel from 1986 including
all device drivers, TCP/IP, the file system, system calls, and so
forth is roughly 100k lines of code. How difficult can it be to join
a network and send and receive packets? Could we make do with
1k lines of system-side code and 1.01 MB of firmware?

The solution for hardware device drivers is to push the complex-
ity where it belongs in 2015, not where it belonged in 1965. Some
say they would not trust hardware vendors to get complex soft-
ware right, and therefore the complexity should remain in soft-
ware running on the CPU. As long as systems software authors
cannot get software right either, there is no huge difference in
correctness. It is true that having most of the logic in an operat-
ing system does carry an advantage due to open source systems
software actually being open source. Everyone who wants to
review and adjust the 100k+ lines of code along their open source
OS storage stack can actually do so, at least provided they have
some years of spare time. In contrast, when hardware vendors
claim to support “open source,” the open source drivers com-
municate with an obfuscated representation of the hardware,
sometimes through a standard interface such as SATA AHCI or
HD audio, so in reality the drivers reveal little of what is going on
in the hardware.

The trustworthiness of complex I/O devices would be improved
if hardware vendors truly understood what “open source” means:
publishing the most understandable representation, not just any
scraps that can be run through a compiler. Vendors might prefer
to not understand, especially if we keep buying their hardware
anyway. Would smart but non-open hardware be a disaster?
We can draw some inspiration from the automobile industry.
Over the previous 30 years, we lost the ability to fix our cars and
tinker with them. People like to complain about the loss of that

ability. Nobody remembers to complain about how much better
modern cars perform when they are working as expected.

Technology should encapsulate complexity and be optimized for
the common case, not for the worst case, even if it means we, the
software folk, give up the illusion of being in control of hardware.

If It Is Broken, Don’t Not Fix It
The operating system is an old concept, but is it an outdated one?
The early time-sharing systems isolated users from other users.
The average general purpose operating system still does a decent
job at isolating users from each other. However, that type of
isolation does little good in a world that does not revolve around
people logging into a time-sharing system from a teletype. The
increasing problem is isolating the user from herself or himself.

Ages ago, when those who ran programs also wrote them, or at
least had a physical interaction possibility with the people who
did, you could be reasonably certain that a program you ran did
not try to steal your credit card numbers. Also, back then your
credit card information was not on the machine where you ran
code, which may just as well be the root cause as to why nobody
was able to steal it. These days, when you download a million
lines of so-so trusted application code from the Internet, you
have no idea of what happens when you run it on a traditional
operating system.

The time-sharing system also isolates the system and hard-
ware components from the unprivileged user. In this age when
everyone has their own hardware—virtual if not physical—that
isolation vector is of questionable value. It is no longer a catas-
trophe if an unprivileged process binds to transport layer ports
less than 1024. Everyone should consider reading and writing
the network medium as unlimited due to hardware no longer
costing a million dollars, regardless of what an operating system
does. The case for separate system and user software compo-
nents is therefore no longer universal. Furthermore, the abstract
interfaces that hide underlying power, especially that of modern
I/O hardware, are insufficient for high-performance computing.
If the interfaces were sufficient, projects looking at unleashing
the hidden I/O power [3, 4] would not exist.

In other words, since the operating system does not protect
the user from evil or provide powerful abstractions, it fails its
mission in the modern world. Why do we keep on using such
systems? Let us imagine the world of computing as a shape
sorter. In the beginning, all holes were square: all computa-
tion was done on a million-dollar machine sitting inside of a
mountain. Square pegs were devised to fit the holes. The advent
of time-sharing brought better square pegs, but it did so in the
confines of the old scenario of the mountain-machine. Then the
world of computing diversified. We got personal computing, we
got mobile devices, we got IoT, we got the cloud. Suddenly, we

http://www.usenix.org

8    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

OPINION
The Rise and Fall of the Operating System

had round holes, triangular holes, and the occasional trapezoid
and rhombus. Yet, we are still fascinated by square-shaped pegs,
and desperately try to cram them into every hole, regardless of
whether they fit.

Why are we so fascinated with square-shaped pegs? What hap-
pens if we throw away the entire operating system? The first
problem with that approach is, and it is a literal show-stopper,
that applications will fail to run. Already in the late 1940s com-
putations used subroutine libraries [2]. The use of subroutine
libraries has not diminished in the past 70 years, quite to the
contrary. An incredible amount of application software keeping
the Internet and the world running has been written against the
POSIX-y interfaces offered by a selection of operating systems.
No matter how much you do not need the obsolete features pro-
vided by the square peg operating system, you do want the appli-
cations to work. From-scratch implementations of the services
provided by operating systems are far from trivial undertakings.
Just implementing the 20-or-so flags for the open() call in a
real-world-bug-compatible way is far from trivial.

Assuming you want to run an existing libc/application stack, you
have to keep in mind that you still have roughly 199 system calls
to go after open(). After you are done with the system calls, you
then have to implement the actual components that the system
calls act as an interface to: networking, file systems, device
drivers, etc. After all that, you are finally able to get to the most
time-consuming bit: testing your implementation in the real
world and fixing it to work there. In essence, we are fascinated by
square-shaped pegs because our applications rest on the support
provided by those pegs. That is why we are stuck in a rut and few
remember to look at the map.

There Is No Such Thing as Number One
The guitarist Roy Buchanan was confronted with a yell from
the audience titling him as number one. Buchanan’s response
was: “There is no such thing as number one ... but I love you for
thinking about it, thank you very much.” The response contains
humble wisdom: no matter how good you are at some style(s), you
can never be the arch master of all the arts. Similarly, in the ages
past the mountain-machine, there is no one all-encompassing
operating system because there are so many styles to computing.
We need multiple solutions for multiple styles. The set presented
below is not exhaustive but presents some variations from the
mountain-machine style.

Starting from the simplest case, there is the embedded style case
where you run one trust-domain on one piece of hardware. There,
you simply need a set of subroutines (drivers) to enable your
application to run. You do not need any code that allows the single-
user, single-application system to act like a time-sharing system
with multiple users. Notably, the single-application system is even

simpler and more flexible than the single-user system [5], which,
in turn, is simpler and more flexible than the multi-user system.

Second, we have the cloud. Running entire time-sharing systems
as the provisioning unit on the cloud was not the ticket. As a
bootstrap mechanism it was brilliant: everything worked like
it worked without virtualization, so the learning curve could
be approximated as having a zero-incline. In other aspects, the
phrase “every problem in operating systems can be solved by
removing layers of indirection” was appropriate. The backlash
to the resource wastage of running full operating systems was
containers, i.e., namespace virtualization provided by a single
time-sharing kernel.

While containers are cheaper, the downside is the difficulty in
making guarantees about security and isolation between guests.
The current cloud trend is gearing towards unikernels, a term
coined and popularized by the MirageOS project [6], where the
idea is that you look at cloud guests just like you would look
at single-application hardware. The hypervisor provides the
necessary isolation and controls guest resource use. Since the
hypervisor exposes only a simple hardware-like interface to the
guest, it is much easier to reason about what can and should hap-
pen than it is to do so with containers. Also, the unikernel can
be optimized for each application separately, so the model does
not impose limiting abstractions either. Furthermore, if you can
reasonably partition your computations so that one application
instance requires at most one full-time core, most of the multi-
core programming performance problems simply disappear.

We also need to address the complex general purpose desktop/
mobile case, which essentially means striking a balance between
usability and limiting what untrusted applications can do. Virtu-
alization would provide us with isolation between applications,
but would it provide too much isolation?

Notably, when you virtualize, it is more difficult to optimize
resource usage, since applications do not know how to play
along in the grand ecosystem. For the cloud, that level of general
ignorance is not a huge problem, since you can just add another
datacenter to your cloud.

You cannot add another datacenter into your pocket in case your
phone uses the local hardware resources in an exceedingly slack
manner. Time will tell if virtualization adapted for the desktop
[7] is a good enough solution, or if more fine-grained and precise
methods [8] are required, or if they both are the correct answer
given more specific preconditions. Even on the desktop, the
square peg is not the correct shape: we know that the system
will be used by a single person and that the system does not need
to protect the user from non-existent other users. Instead, the
system should protect the user from malware, spyware, trojans,
and anything else that can crawl up the network pipe.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  9

OPINION
The Rise and Fall of the Operating System

What We Are Doing to Improve Things
We can call them drivers, we can call them components, we can
call them subroutines, we can call them libraries, but we need
the pegs at the bottom of the computing stack for our applica-
tions to work. In fact, everything apart from the topmost layer of
the software stack is a library. These days, with virtually unlim-
ited hardware, it is mostly a matter of taste whether something
is a “system driver” or “application library.”

Rolling your own drivers is a hopeless battle. To address that
market, we are providing componentized, reusable drivers at
http://rumpkernel.org/. Those drivers come unmodified from
a reputable kernel. Any approach requiring modification (aka
porting) and maintenance induces an unbearable load for any-
thing short of the largest projects with vast amounts of developer
resources.

Treating the software stack as a ground-up construction of
driver components gives the freedom to address each problem
separately, instead of trying to invent ways to make the problem
isomorphic to a mountain-machine. Drivers lifted from a time-
sharing system will, of course, still exhibit time-sharing char-
acteristics—there is no such thing as number one with drivers
either. For example, the TCP/IP driver will still prevent non-root
from binding to ports less than 1024. For example, in a uniker-
nel, you are free to define what root or non-root means or simply
compile the port check out of the driver. You can perform those
modifications individually to suit the needs of each application.
As a benefit, applications written for time-sharing-y, POSIX-y
systems will not know what hit them. They will simply work
because the drivers provide most everything that the applica-
tions expect.

We ended up building a unikernel based on the drivers offered
by rump kernels via rumpkernel.org: Rumprun. We were not
trying to build an OS-like layer but one day simply realized that
we could build one which would just work, with minimal effort.
The noteworthiness of the Rumprun unikernel does not come
from the fact that existing software such as Nginx, PHP, and
mpg123 can be cross-compiled in the normal fashion and then
run directly on the cloud or on bare metal. The noteworthiness
comes from the fact that the implementation is a few thousand
lines of code ... plus drivers. The ratio of drivers to “operating
system” is on the order of 100:1, so there is very little operat-
ing system in there. The Rumprun implementation is that of an
orchestrating system, which conducts the drivers.

Conclusion
Time-sharing systems were born over 50 years ago, a period
from which we draw our concept of the operating system. Back
then, hardware was simple, scarce, and sacred, and those attri-
butes drove the development of the concepts of the system and
the users. In the modern world, computing is done in a multitude
of ways, and the case for the all-encompassing operating system
has been watered down. Advances in semiconductor technology
have enabled hardware to be smart, but hardware still exposes
dumb interfaces, partially because we are afraid of smart
hardware.

The most revered feature of the modern operating system is sup-
port for running existing applications. Minimally implemented
application support is a few thousand lines of code plus the driv-
ers, as we demonstrated with the Rumprun unikernel. Therefore,
there is no reason to port and cram an operating system into
every problem space. Instead, we can split the operating system
into the “orchestrating system” (which also has the catchy OS
acronym going for it) and the drivers. Both have separate roles.
The drivers define what is possible. The orchestrating system
defines how the drivers should work and, especially, how they
are not allowed to work. The two paths should be investigated
relatively independently as opposed to classic systems develop-
ment where they are deeply intertwined.

References
[1] http://www.computerhistory.org/timeline/?category=cmptr.

[2] M. Campbell-Kelly, “Programming the EDSAC: Early
Programming Activity at the University of Cambridge,” IEEE
Annals of the History of Computing, vol. 2, no. 1 (January–
March 1980), pp. 7–36.

[3] S. Peter, J. Li, Irene Zhang, D. R. K. Ports, D. Woos, A. Krish-
namurthy, T. Anderson, T. Roscoe, “Arrakis: The Operating
System Is the Control Plane,” Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation,
(2014), pp. 1–16.

[4] L. Rizzo, “netmap: A Novel Framework for Fast Packet
I/O,” Proceedings of the USENIX Annual Technical Conference
(2012), pp. 101–112.

[5] B. Lampson and R. Sproull, “An Open Operating System for
a Single-User Machine,” ACM Operating Systems Rev., vol. 11,
no. 5 (Dec. 1979), pp. 98–105.

[6] MirageOS: https://mirage.io/.

[7] Qubes OS: https://www.qubes-os.org/.

[8] Genode Operating System Framework: http://genode.org/.

http://www.usenix.org
http://rumpkernel.org/
http://www.computerhistory.org/timeline/?category=cmptr
https://mirage.io/
https://www.qubes-os.org/
https://www.qubes-os.org/

